全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關注高考網公眾號

    (www_gaokao_com)
    了解更多高考資訊

首頁 > 高中頻道 > 高二數學復習方法 > 高中數學解析幾何中求參數取值范圍的方法(3)

高中數學解析幾何中求參數取值范圍的方法(3)

2011-09-13 18:24:31學習方法網

  四、利用三角函數的有界性構造不等式

  曲線的參數方程與三角函數有關,因而可利用把曲線方程轉化為含有三角函數的方程,后利用三角函數的有界性構造不等式求解。

  例8 若橢圓x2+4(y-a)2 = 4與拋物線x2=2y有公共點,

  求實數a的取值范圍.

  分析: 利用橢圓的參數方程及拋物線方程,得到實數a與參數θ的關系,再利用三角函數的有界性確定a的取值情況.

  解:設橢圓的參數方程為 (θ為參數)

  代入x2=2y 得

  4cos2θ= 2(a+sinθ)

  ∴a = 2cos2θ-sinθ=-2(sinθ+ 14 )2+ 178

  又∵-1≤sinθ≤1,∴-1≤a≤178

  例9 已知圓C:x2 +(y-1)2= 1上的點P(m,n),使得不等式m+n+c≥0恒成立,求實數c的取值范圍

  分析:把圓方程變?yōu)閰捣匠?利用三角函數的有界性,確定m+n的取值情況,再確定c的取值范圍.

  解:∵點P在圓上,∴m = cosβ,n = 1+sinβ(β為參數)

  ∵m+n = cosβ+1+sinβ = 2 sin(β+ π4 )+1

  ∴m+n最小值為1-2 ,

  ∴-(m+n)最大值為2 -1

  又∵要使得不等式c≥-(m+n) 恒成立

  ∴c≥2 -1

  五、利用離心率構造不等式

  我們知道,橢圓離心率e∈(0,1),拋物線離心率e = 1,雙曲線離心率e>1,因而可利用這些特點來構造相關不等式求解.

  例10已知雙曲線x2-3y2 = 3的右焦點為F,右準線為L,直線y=kx+3通過以F為焦點,L為相應準線的橢圓中心,求實數k的取值范圍.

  分析:由于橢圓中心不在原點,故先設橢圓中心,再找出橢圓中各量的關系,再利用橢圓離心率0<1,建立相關不等式關系求解.< p>

  解:依題意得F的坐標為(2,0),L:x = 32

  設橢圓中心為(m,0),則 m-2 =c和 m-32 = a2c

  兩式相除得: m-2m-32 = c2a2 = e2

  ∵0<1,∴0<1,解得m>2,

  又∵當橢圓中心(m,0)在直線y=kx+3上,

  ∴0 = km+3 ,即m = - 3k ,

  ∴- 3k >2,解得-32 <0< p>

  上面是處理解析幾何中求參數取值范圍問題的幾種思路和求法,希望通過以上的介紹,能讓同學們了解這類問題的常用求法,并能認真體會、理解掌握,在以后的學習過程中能夠靈活運用。

[標簽:數學]

分享:

高考院校庫(挑大學·選專業(yè),一步到位!)

高考院校庫(挑大學·選專業(yè),一步到位!)

高校分數線

專業(yè)分數線

  • 歡迎掃描二維碼
    關注高考網微信
    ID:gaokao_com

  • 👇掃描免費領
    近十年高考真題匯總
    備考、選科和專業(yè)解讀
    關注高考網官方服務號


尤溪县| 达拉特旗| 通化县| 蓬溪县| 辰溪县| 远安县| 大石桥市| 许昌市| 临夏县| 吴旗县| 夏邑县| 博爱县| 孟村| 浠水县| 河北区| 新竹市| 长宁区| 郁南县| 东阳市| 屏南县| 宣威市| 镇平县| 聂荣县| 都昌县| 大安市| 柏乡县| 舟山市| 宿州市| 镇安县| 临沂市| 台中市| 花莲市| 武宣县| 剑阁县| 神农架林区| 东宁县| 安宁市| 朝阳市| 玛曲县| 波密县| 阜宁县|